
Agilent Technologies

Release Notes for
Agilent TestExec SL 5.1

===
Agilent TestExec SL 5.0 - 20 December, 2001
===
TABLE OF CONTENTS FOR THE MAJOR SECTIONS IN THIS FILE

 1. General Notes

 2. Changes from 4.1.1 to 5.0, including known defects

 3. Changes from version 4.1 to 4.1.1

 4. Changes from version 4.0 to 4.1

 5. Changes from version 3.22 TO 4.0

 6. Changes from version 3.21 TO 3.22

 7. Changes from version 3.2 TO 3.21

 8. Changes from version 3.11 TO 3.2

 9. Changes from version 3.1 TO 3.11

 10. Changes from version 3.0 TO 3.1

 11. Changes from version 2.0 TO 3.0

===
Section 1. GENERAL NOTES
===

A. Installation Notes

 If you have any TestExec SL 5.0 beta release installed, you must uninistall
 it before installing this release.

 There have been some installation problems if a Microsoft Office application
 (or anything that uses Visual Basic for Applications) is running during the
 installation. We recommend that you exit all running applications prior to
 the installation (you may have to reboot anyway).

 If you have TestExec SL 4.1 installed, the installation program will allow
 you to either upgrade your existing installation or co-install TestExec SL
 5.0. In the case of an upgrade, TestExec SL 4.1 will be removed from your
 system (unless another system is still referencing it) and your existing
 user files directory (the TestExec SL 4.1 default was "\My TxSL Files") will
 be reused and its "Preferences.upf" file updated. If you choose to
 co-install, the default for the user files directory is "\My TxSL 5.0
 Files". You can change this, but the installation program will prevent you
 from naming it the same as an existing TestExec SL 4.1 user files directory.

 If you are co-installing this release with TestExec SL 4.1, you should copy
 files "TxSLSSField.fdef", "TxSLSSRecord.rdef", "TxSLXMLField.fdef" and
 "TxSLXMLRecord.rdef" from directory "C:\Program Files\Agilent\TestExec
 SL 5.0\DefaultConfiguration" to the "Test Systems" subdirectory of the
 TestExec SL 4.1 user files directory (typically "C:\My TxSL Files\Test
 Systems") to overwrite the old version's datalogging definition files.

 This installation can coexist with a TestExec SL 4.1 installation with one
 exception: the TestExec SL Action Wizard 4.1. If you need to use the old
 Action Wizard, do the following:

 1. Close all TestExec SL processes.

 2. From either a DOS command prompt or the "Start | Run..." menu,
 execute "regsvr32 C:\Program Files\Agilent\TestExec SL 4.1\bin\
 txsleditors.ocx".

 3. Run the TestExec SL Action Wizard 4.1. At this point, TestExec SL 4.1
 can be run but TestExec SL 5.0 cannot.

 4. Close all TestExec SL processes.

 5. From either a DOS command window or the "Start | Run..." menu,
 execute "regsvr32 C:\Program Files\Agilent\TestExec SL 5.0\bin\
 txsleditors.ocx".

B. To run Agilent TestExec SL, launch "Agilent TestExec SL 5.0" from the
 Start menu in the Windows taskbar.

C. To view the Release Notes for this software release, do the following:

 1. Start online help by choosing "Contents" from the Help menu in
 TestExec SL's menu bar.

 2. When the introductory topic titled "Welcome to Agilent TestExec SL"
 appears, click the "Release Notes" link adjacent to "See Also" at the
 bottom of the topic.

==
Section 2. CHANGES FROM 4.1.1 TO 5.0
==

A. This release has Microsoft Visual Basic for Applications (VBA) built
 into it as a language you can use to create actions. See the online
 Release Notes for a link to more information about this feature.

B. TestExec SL now supports the Agilent Fault Detective. If the Fault Detective
 is installed prior to TestExec SL 5.0, the installation process will make
 the appropriate customizations to your "Preferences.upf" file. If you
 install Fault Detective after TestExec SL, you must either manually make
 those customizations or reinstall TestExec SL. See the notes in file
 "\Program Files\Agilent\TestExec SL 5.0\Examples\FaultDetective\readme.txt".

C. The behavior of the TestExec SL sequencer has been changed so that
 choosing "Ignore All Failures" only affects when the testplan stops
 and does not affect the judgment of the testplan.

 In previous release of TestExec SL, the "Ignore All Failures" setting
 affected both the running of the testplan (it would run until the end
 of the testplan) and affected the judgment (all testplans were marked
 as passing).

 If you wish to have the old behavior, where "Ignore All Failures"
 affects both the running of the Testplan and the judgment, then you
 should add the following entry to the "Preferences.upf" file.

 [Process]
 ;This entry is optional, and if not present, the default is No.
 Ignore Failures Forces Pass = Yes

D. This release supports the checking of multiple pass/fail limits per test.
 See the online Release Notes for a link to more information about this
 feature.

E. The setup|cleanup|execute model for actions has been simplified to
 an execute|cleanup model in this release. See the online Release Notes
 for a link to more information about this feature.

F. This release supports the use of COM (Component Object Model) objects.
 You can define a COM object as a module in TestExec SL's topology and
 then access it from action code. See the online Release Notes for a
 link to more information about this feature.

G. This release lets you examine the actual values of parameters in
 parameter blocks while a testplan is paused. See the online Release
 Notes for a link to more information about this feature.

H. TestExec SL has a free evaluation period that lasts thirty days. After
 that, TestExec SL will quit operating and you must redeem your license if
 you wish to continue using TestExec SL. See the online Release Notes for
 a link to more information about licensing.

KNOWN DEFECTS IN THE 5.0 RELEASE

A. If you unload a VBA project upon which the currently loaded testplan
 relies, TestExec SL will not automatically reload it when trying to run
 the testplan. You must either unload/reload the test plan or reload the
 VBA project.

B. Bug #SGDU00007710: First VBA user dialog displays behind TypicalOpUI.

 The first time a testplan containing a dialog box or user form invoked
 by a VBA action is run from TypicalOpUI (or any other Visual Basic
 operator interface), the dialog box or form appears behind the
 TypicalOpUI form.

 WORKAROUND: Click the "Agilent TestExecSL" button in the Windows taskbar
 to bring the dialog box or form to the front, and then proceed normally.
 After this, the dialog box/form will correctly appear in front of the
 TypicalOpUI form.

C. The default path when saving a VBA action project should be
 "$TestplanDir$\Bin" if a testplan is loaded or
 "$UserFilesDir$\Test Systems" if no testplan is loaded. This does not
 always work correctly. If you choose the Save button in the VBA Action
 Project Management box the path defaults to the first "Bin" directory
 found, which may not be the one you want. The workaround is to explicitly
 specify -- i.e., use Save As -- where to save the project file.

D. The profiler will not display its results if the testplan fails. Even if
 you set the Sequencer Halting option (Options | Testplan Options | Execution
 tab) to Ignore All Failures, TestExec SL still reports a testplan as failing

 if any of its tests fail. To view profiler results in a testplan with
 failing tests, you must skip the failing tests (select one or more tests and
 choose Debug | Skip).

E. When using the editor for data whose type is "Range" it is possible to
 enter an illegal step size without generating an error message. If you
 enter an illegal step size, it will be changed automatically to a legal
 value when you click the OK button for the dialog box.

F. Your project will not link if you include spaces in the names of instruments
 when using the Action Wizard. You can work around this by enclosing the
 name of an instrument in double quotes where it is referenced in the
 Project | Settings | Link | Input... Object/Library Modules field in Visual
 Studio.

G. If you have developed a custom operator interface in Visual Basic, it will
 generate an unrecoverable error under the following conditions:
 - If the VB application attempts to access any non-password related TestExec
 SL method before validating a successful login that happened either
 manually or via TestExec SL's automatic login feature
 - If TestExec SL is either in its evaluation period and warning of its
 expiration or at the end of the licensed period and warning of the
 remaining days until expiration.

 The workaround is to insert the appropriate snippet of code into the
 operator interface code prior to any other accessing of TestExec SL:

 If using the automatic login feature...
 While Not TestExecSL1.Security.IsAUserLoggedIn
 Wend

 If not using the automatic login feature...
 While Not TestExecSL1.Security.IsAUserLoggedIn
 TestExecSL1.Security.Login "ValidUserName", "ValidPassword"
 Wend

==
Section 3. CHANGES FROM VERSION 4.1 TO 4.1.1
==

A. A change to 'seq.dll' creates a new sequence called 'AfterMain' in
 any testplan loaded in TestExecSL 4.1.1. The 'AfterMain'
 sequence is only added to testplans that do not have it, and its
 presence does not change the behavior of old testplans.
 However, users can make use of this sequence to perform operations
 like marking good UUT's after testing in the 'Main' sequence completes
 normally.

==
Section 4. CHANGES FROM VERSION 4.0 TO 4.1
==

A. TestExec SL is now a commercially available product.

B. References to HP or Hewlett-Packard in TestExec SL and its
 documentation have been changed to Agilent or Agilent
 Technologies.

C. TestExec SL now has a Web site at
 http://www.agilent.com/find/testexec where you can find
 up-to-date product news. Also, an Action Wizard to help
 you create actions in Microsoft Visual C++ will soon
 appear there for downloading.

D. This release includes two tutorials to get you started using
 TestExec SL. You can access them under Tutorials in TestExec
 SL's Help menu.

E. All of TestExec SL's documentation is now online. This makes
 it easier to find information because the index of help topics
 now spans all topics. Also, you can do text searches across all
 topics to find items of interest, plus add topics of interests
 to a list of Favorites for easy reuse. For more information,
 see "Using Online Help" in the online help.

 Note about printing from online help: You have the option of
 printing a selected topic or all topics beneath a given point
 in the hierarchy of help topics. A bug in Microsoft's HTML Help
 viewer causes some topics to print with incorrect formatting
 when you use the "Print the selected heading and all subtopics"
 option. If this happens, you must print the affected topics
 individually.

F. This release adds an automatic login feature that lets you skip
 the login process if security is not an issue for you. This
 feature is enabled by default but it can be disabled. For more
 information, see "Logging In Automatically" in the online help.

G. Previous releases of TestExec SL stored user preferences and
 other transient data in an initialization file named
 "tstexcsl.ini". This release replaces the initialization file
 with a "preferences file" whose name is "preferences.upf". The
 contents of this file are described in various topics in online
 help as needed.

H. Besides running under Windows NT Service Pack 5 or later with
 Internet Explorer 4 Service Pack 1 or later, this release runs
 under Windows 2000.

I. This release adds a generic switching handler that lets you
 control various switching modules whose programming is
 message-based. It is readily customizable to support
 additional switching hardware. For more information, see
 "Working with the Generic Message-Based Switching Handler"
 in the online help.

J. This release adds a new sequence named AfterMain. Items you
 place in it are executed after the Main sequence has run to
 completion. For more information, see "Branching on a Passing
 or Failing Testplan" in the online help.

K. This release changes the hierarchy of TestExec SL's directories
 to improve the distinction between system areas used by TestExec
 SL and areas that contain files created and maintained by users.
 In particular, this change makes it easier for users to migrate
 testplans and their associated code from development to production

 systems. For more information, see "Standard Directories" in the
 online help.

 Note: Because TestExec SL's directory structure has changed,
 installing the new software on an existing system will not remove
 or replace the old software. Be aware that any shortcuts pointing
 to the old software will continue to point to the old software,
 which may cause problems unless you correct the shortcuts.

L. This release of TestExec SL is not an update for the TestExec SL
 software that comes with Agilent TS-5400 and TS-5500 test systems.
 Those systems come with their own versions of TestExec SL.
 Because this version of TestExec SL and the TS-5400/5500 versions
 of TestExec SL are installed in different locations, this version
 and TS-5400/5500 versions can reside on the same system.

M. The configuration files for TxSL style, spreadsheet-compatible
 datalogging have been modified to include the LimitArrayIndex
 field. This allows for easier interpretation of tests that
 return arrays of values.

N. TestExec SL now comes with a more extensive set of predefined
 actions for your use. These include general-purpose timing
 actions plus actions for controlling specific instruments:

 Agilent 34401 DVM
 Agilent 54600 Oscilloscope
 Agilent 33120 Arbitrary Waveform Generator
 Agilent 3499A Switch/Control Unit
 Agilent 6613C Power Supply

 For more information, see "Predefined Actions Provided with
 TestExec SL" in the online help.

 Also, example actions to control the Agilent 34401A DVM are
 provided for:

 HP BASIC for Windows
 Agilent VEE
 Microsoft Visual C++
 National Instruments LabView

 For more information, see "Examples of Actions in Multiple
 Languages" in the online help.

O. This release adds an option that lets you set the location of
 the system topology file from the development environment.

P. When you create a new testplan TestExec SL now prompts you
 with a default name and location for the testplan. The location
 is automatically added to the search paths for the testplan.

Q. TestExec SL now supports the use of shortcut notation in the
 form of self-expanding macros that substitute for longer
 pathnames. TestExec SL sometimes inserts these macros into
 pathnames, such as in dialog boxes, or you can manually type
 them as shortcuts. For more information, see "Shortcut Notation
 in the File System" in the online help.

R. The evaluation version of TestExec SL is identical to the full
 version except that the evaluation version quits running after
 thirty days.

Known bugs for the 4.1 release.

A. Because of incompatibilities between program code linked with
 National Instruments LabWindows/CVI and program code linked with
 Microsoft Visual Studio 6.0, you will encounter difficulties
 using LabWindows/CVI program code with Agilent TestExec SL.
 Please contact Agilent technical support for more information
 and assistance.

===
Section 5. CHANGES FROM VERSION 3.22 TO 4.0
===

A. This release adds a feature called the Throughput Multiplier
 that lets you test multiple UUTs with a single set of hardware
 resources and a single testplan. Because of reduced UUT
 handling time and better overlapping of tests, this reduces
 the test time per UUT and increases the utilization of your
 test system. Also included is an example of an operator
 interface written in Visual Basic that supports multi-UUT
 testing. For more information, see Chapter 10 in the printed
 "Using Agilent TestExec SL" book.

B. This release adds a feature that lets those who are familiar
 with the commands used to control message-based instruments
 create easy-to-use actions to control instruments for those
 who are not familiar with the commands. For more information,
 see Chapter 9 in the printed "Using Agilent TestExec SL" book.

C. This release adds a feature that lets you create strings that
 contain replaceable parameters. For more information, see
 Chapter 8 in the printed "Using Agilent TestExec SL" book.

D. This release includes redesigned data editors used to edit the
 characteristics of parameters and symbols. The redesigned data
 editors provide a tree view on the forms in which they appear
 plus a more detailed view on multiple tabs in a separate dialog
 box.

 Other changes to the editors include:
 * Many data types support units
 * You can view integer data in decimal, hexadecimal, and
 octal formats
 * The integer data type supports enumeration
 * You can view string data in ASCII, hexadecimal, and octal
 formats
 * Multi-value data types, such as arrays, support a
 spreadsheet-style editor that allows cutting and pasting
 from commercial spreadsheets
 * Multi-value data types support the insertion of
 comma-separated values
 * You can graphically view data for the real array, waveform
 and point array data types

 For more information, see "Agilent TestExec SL Data Editors" in the
 table of contents for Agilent TestExec SL's online help.

E. Inserting actions into tests has been simplified. Now you can:
 * Quickly insert an action by typing part of its name and
 letting Agilent TestExec SL suggest likely choices.
 * Find actions via two levels of searching
 * Select multiple actions to be inserted instead of inserting
 them one at a time.

F. This release adds a feature that validates the integrity of
 testplans as you develop them. For more information, see
 "Testplan Validation Features" in Chapter 3 of the printed
 "Getting Started" book.

G. As of this release, Agilent TestExec SL no longer is supported on
 Windows 95. It now requires Windows NT 4 Service Pack 4 or
 later and Microsoft Internet Explorer 4 Service Pack 1 or
 later. Also, the code base has been upgraded to run using
 Version 6 of Microsoft Visual Basic and Microsoft Visual C++.
 Users who develop code using the Agilent TestExec SL libraries or
 samples should upgrade to these new versions.

H. Use of the equivalence limit checker for real variables in new
 code is now prohibited. This change resulted from errors
 resulting from machine accuracy when attempting to compare real
 numbers. The high/low or nominal tolerance limit checkers are
 recommended for use with real numbers.

I. The addition of hex/octal formats and units results in the
 listing output changing slightly. Users who have written
 utilities that parse the listing output may need to modify
 these utilities.

J. The system requirements for running Agilent TestExec SL are now:

 * IBM-compatible PC. A PentiumÆ Pro 200 MHz (or equivalent)
 with 64 MB of RAM is the minimum, and a PentiumÆ II 300 MHz
 or faster with 128 MB of RAM is recommended.

 * CD-ROM drive

 * 1024 x 768 graphics or better

 * At least 100 MB of free hard disk space. A minimal
 installation of Agilent TestExec SL requires about 32 MB, and a
 full installation requires about 35 MB. The remaining space
 is needed for testplans, action definitions, and other files
 that you create with Agilent TestExec SL.

 * Microsoft Windows NT 4.0 with Service Pack 4 or later

 * Microsoft Internet Explorer 4 with Service Pack 1 or later

Known Bugs for 4.0 release:

A. If you are running the developer's environment and then

 simultaneously run the operator interface written in Visual
 Basic, the two environments will be linked together. This is an
 unsupported mode that can cause unpredictable behavior when
 editing the testplan while in this state. If you decide to use
 this mode you should save often and avoid making major changes
 to the testplan. Operating in this mode will also result in
 double reporting output being sent to the Visual Basic operator
 interface, and to datalogging files (if the logging of reports
 is enabled.)

B. You should not use dashes (-) preceded by spaces or followed
 by spaces in the names of variants. Variant names that use
 spaces with dashes can cause Agilent TestExec SL to lock up.

C. If you double-click a testplan in Windows Explorer to open it
 in Agilent TestExec SL, the testplan name will appear in the short
 8.3 file format in datalogging records. Because this is not
 normally done from an operator interface or a production
 environment, it should be noticeable only on a development
 system.

D. The "<Agilent TestExec SL home>\samples" directory is not properly
 cleaned up when Agilent TestExec SL in uninstalled. You must
 manually remove this directory.

E. The Stop button does not work when single-stepping through
 actions. Instead, you must use the Abort button.

F. The Agilent TestExec SL ActiveX control that lets Agilent TestExec SL
 interact with code written in Visual Basic is not properly
 registered until you have run the Agilent TestExec SL development
 environment at least once. Thus, you should run the development
 environment at least once before attempting to run any operator
 interfaces written in Visual Basic.

G. Breakpoints do not work when using the "run selected tests"
 option (Debug | Run Selected Tests). The workaround is to
 single-step through the actions in a test (Debug | Set Action
 Step) and press the Continue button as needed.

H. The results from Agilent TestExec SL's profiler do not appear when
 testplans fail. The workaround for profiling testplans that
 fail is to set the "ignore all failures" feature
 (Options | Testplan Options | Ignore all failures) so that the
 testplan passes.

I. Setting a "skip" flag (Debug | Set Skip) on "if..then..else"
 statements" in a testplan does not work properly. The "if"
 part of the testplan is executed and the "else" part is not.

J. If you using the Agilent TestExec SL ActiveX control in an operator
 interface written in Visual Basic and attempt to write to a
 nonexistent symbol in a symbol table, the write operation
 appear to complete but the symbol will not be written nor will
 an error be generated. Be sure to use valid names when writing
 to symbol tables from Visual Basic applications.

K. Agilent TestExec SL's profiler prints only the first page of its

 results and not successive pages. The workaround is to view
 the data online, which displays it in its entirety, use the
 Windows clipboard to copy sections of the results to another
 application, such as WordPad, and print from there, or examine
 the results in Microsoft Excel.

L. When using looping (Options | Testplan Options | Loop for
 count) in a multi-UUT testplan, the Report window shows the
 pass/fail counts for only the most recent iteration of the
 testplan. For example, if the loop count is set to 2 and the
 testplan contains 10 passing tests, a single-UUT testplan will
 report 20 passing tests and a multi-UUT testplan will report
 10 passing tests for each UUT position. The problem is that the
 multi-UUT report only reflects results from the last iteration
 of the loop executed, and not the cumulative results from all
 iterations.

M. If you are using Agilent TestExec SL with an Agilent TS-5400-family test
 system, be aware that the test system's I/O bypass mode does
 not work with the Agilent 33120 arbitrary waveform generator or the
 Agilent 53131 counter.

N. In some cases the listing for tests (View | Listing | Tests)
 does not show the full test name. Instead, the name is
 truncated; e.g., "Test test NewTest1" may appear as
 "Test tes". Other than making the names of tests somewhat more
 difficult to determine, this causes no problems.

O. If you are using Agilent TestExec SL with an Agilent TS-5400-family
 test system, be aware that the test system's Action Wizard will
 not work properly if you install the Agilent TS-5400 software before
 installing Microsoft Visual C++. The fix is to reinstall the
 Agilent TS-5400 software after installing Visual C++ or install
 Visual C++ before installing the Agilent TS-5400 software.

P. After you make changes to an external symbol table, a dialog
 box appears that lets you save the changes to the file in which
 the external symbol table resides. Even if you say "no," the
 changes are saved to the copy of the symbol table in memory
 even if you choose the OK button when exiting the symbol table
 editor. The Save to File dialog box is your only chance to save
 the symbol table to a file; if you say "no" to it, the next
 time the testplan is loaded the old symbol table values will
 be loaded from the old file.

Q. Contrary to what Agilent TestExec SL's documentation states, file
 "tstexcsl.ini" is removed when you uninstall Agilent TestExec SL.
 If this initialization file contains changes that you wish to
 retain, you should copy it to another location before
 uninstalling Agilent TestExec SL, uninstall and reinstall
 Agilent TestExec SL, and then copy the old initialization file over
 the new one.

L. String formatting applied in a testplan to a parameter
 designated as an Action Output (the parameter's name appears
 in bold in a list of parameters) is not saved when the testplan
 is saved. There are two workarounds if you need to save string
 formatting applied in a testplan for a parameter that is an

 action output -- i.e., a result:

 * You can reference the output parameter to a symbol in symbol
 table TestStepParms and do the string formatting there. The
 string formatting will then be saved with the testplan but
 it will not be possible to reference other action parameters
 in the format.

 * You can make a copy of the action definition, specify string
 formatting for the parameter in the copy of the action
 definition, and use the copy of the action definition
 whenever it is necessary for the parameter to have string
 formatting applied to it.

M. Under some circumstances, you may encounter an Invalid Access
 error when exiting Agilent TestExec SL. This is typically caused
 by an invalid parameter for a hardware module in the system
 topology file, "system.ust". If you see this problem, verify
 that these parameters are correct. Because all of Agilent TestExec
 SL's files are written to disk before this problem occurs,
 your chances of losing data are minimal.

N. The Path Editor will not correct an error when you type the
 name of a switching path containing characters whose case does
 not exactly match an existing switching path and then attempt
 to make a correction via the drop-down list of node names
 without first deleting the incorrect node name. For example,
 suppose you type an incorrect node name in the editor, such as
 one that contains "a" instead of "A". If you attempt to fix
 this mistake by choosing the correct value from the drop-down
 list without deleting the incorrect node name, the problem
 appears to be fixed. However, when you leave the current field
 the node name reverts back to the incorrect value. Two
 workarounds are:

 * You can delete the mistyped node name and use the drop-down
 list to choose the correct one.

 * You can directly edit the path by retyping the correct node
 name to replace the incorrect one.

Notes About Using Expressions in Flow Control Statements:

 Many of the flow of control statements -- e.g., if...then,
 for...step -- and the assignment statement (=) allow one or
 more expressions for fields in them. Some suggestions for using
 expressions in flow control statements are:

 * To replace an expression with a reference to a symbol in a
 symbol table, highlight the entire expression, click the
 mouse's right button, and assign the reference.

 * For expressions where the order of evaluation is important,
 use parentheses to force that order.

 * Be sure that the expression in a field is valid before
 leaving the field. Valid expressions:
 ** Cannot be blank

 ** Cannot end in an operator
 ** Contain matching sets of parentheses (when parentheses
 are present)
 ** Contain symbols whose names begin with an alpha
 character (not a number) and contain only alphanumeric
 characters
 ** Are case-sensitive

 * When you specify a symbol in an expression and that symbol
 does not already exist in a public symbol table, a new symbol
 whose type is real is automatically created in the
 SequenceLocals symbol table. If the expression does not seem
 to return the correct value, verify that a new symbol of the
 correct name was created in the SequenceLocals symbol table.

Notes About Reloading Changed .umd, .sym, and .ust Files:

 After a testplan is loaded, changes to action definition
 ("*.umd"), external symbol table ("*.sym"), and switching
 topology ("*.ust") files are not necessarily updated
 immediately. This happens because copies of these files are
 held in memory and are not always updated upon making changes
 to them. The workaround in all cases is to exit and reload the
 testplan. Other, more selective workarounds include:

 * You can reload "*.umd" or "*.sym" files by choosing
 Options | Testplan Options. Then choose the Search Paths tab.
 Choose Action Definitions or Symbol Tables from the drop-down
 list associated with "Search paths for." Click on the list of
 testplan-specific files and choose the Apply button to reload
 the files.

 * You can reload "*.ust" files by choosing Options | Topology
 Files and choosing the OK button.

==
Section 6. CHANGES FROM VERSION 3.21 TO 3.22
==

A. Modifying and rerunning a testplan that contained comments and
 statements that relied on a testname (eg. using OnFailGoto to
 branch to a non default statement) would result in a memory
 leak. The memory leak was repaired in version 3.22

==
Section 7. CHANGES FROM VERSION 3.2 TO 3.21
==

A. Nesting of loops is now allowed up to 32 deep. The previous
 limit was 5.

B. Repaired the login screen for the TypicalOpui operator
 interface. It now correctly hides the password.

==
Section 8. CHANGES FROM VERSION 3.11 TO 3.2
==

A. The datalogging system was significantly enhanced. These enhancements include:
 --Support for a new (TxSL) naming scheme that conforms much more closely to TxSL

naming conventions. It is much easier to understand. The old (3070) naming
scheme continues to be supported.

 --Documentation on the behavior of the data log system.
 --The creation of a TxSL DataLog Configuration editor that allows much easier

editing of the configuration files that specify data log operation.
 --Support for an XML data log file format. The XML file format is self descriptive

and easily understood, at the expense of being larger. Commercial tools exist
that can browse an XML formatted files.

 --Added an ActiveX control that takes an XML formatted TxSL data log output and
populates an object model of the TxSL data log results. The intent of this object
model is for users to walk the object model, extracting data for insertion into a
specific data base format. The object model could also be used to extract
information for custom reports.

 --Added new standard capabilities to specify file names, file name prefixes and
file name suffixes. Users specify these choices with user defined messages.

 --Support of a new style of data log configuration file. These new files have
extensions of rdef (as in record definition) and fdef (as in field definition).
Old style files (with .ini extensions) continue to be supported.

 --Added new sample configuration files that specify how to use the new TxSL naming
schemes when logging to XML and spreadsheet files. The new configuration files
will be loaded in the TxSL\bin directory.

 --In the interest of backward compatibility, did NOT change the tstexcsl.ini file
which specifies which data log configuration files will be used. To use
new/different configuration files, you should modify the Data Log section of the
tstexcsl.ini file.

 --Added support for the use of symbolic references in data logging.
 --Added two user defined messages to the data log system. The

AfterDataLogCreateDone message is generated when the data log system has finished
processing the data. Included with this message is a single string that
represents the data log results. The AfterDataLogFileWriteDone message is
generated after the datalog file is written to disc. Included with this message
is a string that represents the file name.

 --Added the ability to NOT produce a file. This mode of operation is specified by
sending a UserDefinedMessage to TxSL. It is most useful when an operator
interface is analysing the data log results returned from with the
AfterDataLogCreateDone message, and no physical file is needed.

B. With TxSL3.2, some of the samples are installed via the use of an
 archive. This results in the brief display of an unarchive window,
 during the run of the install.

C. The help for the TxSL Development Environment now spans help for all of
 the TxSL components. For example, using help from the development
 environment lets you access help topics for the Agilent TestExec
 Control, the Agilent TestExecSL DataLogging control, and the
 DataLogging Configuration Editor. Using help from any of the components
 continues to only give access to help for that component.

==
Section 9. CHANGES FROM VERSION 3.1 TO 3.11
==

A. The meaning of the #Items field in the data logging store has
 been clarified. As in the past, the value of this field depends
 on the type and size of the data type value.

 For scalars (single values, like reals, ints and strings), the
 value returned was 2, it is now 1.

 For single dimension arrays, the value was N, where N is the size
 of the array. The value remains (unchanged) as N.

 The multiple dimension arrays, the value was 2. The new value is
 minus 1 (-1).

B. The timing of when the TestDesignator field of the data store is
 initialized to "" was changed. The field is now initialized prior
 to running tests.

 This now allows the field to be overwritten in customer actions.
 Overwritting the field is NOT recommended. This change was only done
 to preserve compatibility to a major customers code.

C. You may have more than four loop statements in a testplan. This was
 a bug introduced in 3.10.

==
Section 10. CHANGES FROM VERSION 3.0 TO 3.1
==

Note: Changes from 3.0 to 3.1 did not make the printed manuals. For
 documentation on any of the below features, please refer to the
 online documentation.

A. TxSL now has the concept of a broken statement. A broken statement
 is defined as being a statement with an invalid expression. For
 example, a statement of "If !bogus then" would be flagged
 as broken.

 Note: TxSL does allow the user to execute a testplan with broken
 statements, however the broken statements WILL be ignored by the
 sequencer. This could cause the improper execution order
 of test statements. Please see the online documentation
 for more information.

B. The I data types (i.e. IUtaInt32) now raise exceptions when
 initialized with an invalid name for the parameter. The user may
 leave this exception handling out by inserting:

 #define UTA_IGNORE_PARM_NOT_FOUND_EXCEPTION_ON_ICLASS TRUE

 in their code before including the uta.h header file.

 Note: Agilent strongly recommends that the user leaves exception
 handling enabled for the I data types, since they usually
 signal a mistake between action definitions and the action
 source code.

 It is not necessary to recompile existing actions. Functionality
 will not change. The I data types will only raise exceptions
 if your actions are recompiled without the #defined just mentioned.

C. The concept of running selected statements outside of sequence
 order has been added. This option allows the user to select and

 execute tests outside of the sequencing order. Please see the
 online documentation for more information.

D. Added a new find dialog so that users can do full and partial
 word searches, with case sensitivity, on both statements and
 action names.

E. Datalogging of the Nominal Tolerance limits checker was incorrect.
 The datalogger used to report the nominal & tolerance values
 instead of evaluating them and showing the High/Low values. The
 datalogger now reports the High/Low values for all limits
 checkers.

F. Fixed a defect where HaltOnFailure and IgnoreFailures were not
 working properly from the ActiveX control interface. The new
 behavior is setting either property to true results in the
 opposite property being set to false. If both properties
 are set to true, TxSL will ignore all failures.

G. Fixed a defect where once a testplan was aborted, you could no
 longer single step the testplan. It is now possible for a
 testplan to be aborted, and then single step a testplan from
 the beginning.

H. Changes to lister output for switching:

 Finding particular setup::cleanup switching behavior can be
 difficult, and today involves stepping through each test, or a
 manual examination of the lister output. Since setup::cleanup's
 that are configured as connect::connect are rare, it is valuable
 to quickly find these setups. The format of the listings of the
 testplans and tests has been modified so that it will be easier
 to find particular switching configurations for setup and cleanup.

 The previous behavior of the listing was to show setup::cleanup
 behavior in the following format:

 Switching: [wire2]
 [wire2]
 At Test Setup: Connect Paths
 At Test Cleanup: Connect Paths

 The new behavior of the listing will be to show setup::cleanup behavior
 in the following format:

 Switching: [wire2]
 [wire2]
 Setup::Cleanup = Connect::Connect

 By putting all the setup-cleanup information on one line, it is
 now simple to search the listing output for configurations of
 interest. For example, to find all switching actions that have
 setup::cleanup configured as connect::connect, you would search
 for the following.

 Connect::Connect

 in the lister output.

I. Repaired major defects in automate.c (a sample), dealing with the
 use 5430 IO, and the Response IO. Removed the DriveTime parameter
 from the parm block definition for DirectIO.
 This feature had never been implemented.

J. The format of the output parameters when viewing a listing of
 actions has changed. In earlier releases, the parameter data was
 printed with no delimiters (other than spaces). This made it
 difficult to spot the boundaries between parameters, especially
 when a parameter name or value contained spaces. The format of
 parameter data when using action listings has now changed so that
 a vertical bar is used to delimit the boundaries between fields.
 An example of the new format is shown below.

 Parameters:
 Parm Name |Value |Type |Description
 ----------------|-----------|-----------|---------------
 Input |0 |Int32 |The input value
 Result |-5 |Int32 |The return value

K. A defect in the lister that would lock up the program when the
 lister window was resized horizontally has been repaired.

L. A defect in the lister that would GPF (General Protection Fault)
 upon saving to a file that was already in use was repaired.

M. It is possible to set 3070 style data logging so that information sent
 to the report window is also embedded in the data log file. In
 previous versions of TxSL, the report strings that were at the
 end of the report output would incorrectly occur early
 in the data log file. This behavior has been repaired, so that
 report strings that are at the end of the report output also
 occur at the end of the data log output.

 This was accomplished by changing the first parameter on
 the report line in hpfmtdef.ini from 4 to 2. If backward
 compatibility is desired, then editing hpfmtdef.ini so that this
 parameter continues to be equal to 4 is possible. This file
 is usually found in the Agilent TestExec SL/bin directory.

 This change does not impact spread sheet style data logging,
 unless a custom .ini file that includes report information
 has been created.

N. The loglevel field (item 29) that is output in a datalogging file has
 been changed slightly. Loglevels set to "log failures" were
 previously indicated by the word "fail" in the loglevel field.
 The new behavior is for this to be indicated by "failures".
 Loglevels set to "none" were previously indicated by "missing"
 in the log level field. The new behavior is for this to be
 indicated by "none".

 This change impacts 3070 style data logging, when the standard
 data logging .ini files are used. It could impact spreadsheet
 data logging if a custom .ini file has been created that uses
 this field.

O. If the "ignore all failures" flag is set, the UUT will be
 considered to have passed, even if individual tests fail.
 This is because TxSL starts with the concept that a UUT
 is good, and may be proven bad via any individual test
 failures. When failures are ignored, the UUT will be
 never considered to have failed.

 With the above in mind, it is possible to get the following
 report output when "ignore all failures" is set.

 -------- End of Testplan
 3 Passed Tests
 3 Failed Tests

 UUT PASSED

 Ignore all failures is best used when you desire the
 testplan to run to completion, regardless of the passing/
 failing of any tests.

P. The cut/copy/paste of tests with variants from one testplan
 to another was clarified. Tests (and their variants)
 are pasted into new testplans according to the following
 rules.

 --If the destination testplan has a variant with the same name as a variant in the
source testplan, then the tests are simply copied over, and variant information
is preserved.

 --If the source testplan has a variant that does NOT exist in the destination
testplan, then the information for that variant for the pasted tests is lost.
In other words, a new variant is NOT created in the destination testplan.

 --If the destination testplan has a variant that does NOT exist in the source
testplan, then as a test is copied from source to destination, new variant
information for the copied test is created, and initialized with values from the
first variant of the source testplan. In normal usage, this is the normal
variant.

Q. Repaired a defect in the ui_debug.dll sample code that
 would, on approximately the 50th cycle of loading, running
 and unloading a testplan, result in an abnormal termination
 of TxSL.

R. The datalogging ".ini" files were modified so that item 50
 and 51 are swapped. They are now in the correct position.
 This error was not visible in previous versions because
 the incorrect positions in both the data store and format files
 cancelled each other out. In this release, they are correct.
 Users should see no change in behavior.

 The default value for item item 52 in dsdef.ini and ssdef.ini files
 was changed from FTS 40 to Agilent-TS5XX0. It is intended that users
 will modify this field to reflect their particular system name.

 The default value of null (item 35) in the dsdef.ini and
 ssdef.ini was changed from 0 to 0.0 .

S. The profiler identifies the time consumption of different elements of
 a testplan. It is best run on "working" but not yet time optimized
 testplans. Profiling is automatically disabled for a testplan that
 is judged as failed because the testplan has likely terminated early
 without executing all of the tests in the testplan.

 Profiling a testplan that has failures can be done by setting
 the Ignore All Failures option to true. The result will be a testplan
 that runs to completion (even though tests will have failed) and
 profiling information will be available.

T. The standard format file for spreadsheet data logging (ssfmtdef.ini)
 does NOT include an entry that will enable the recording of
 report information. The following .ini file will result in
 report information being inserted into your spread sheet based
 data log records.

(null) 15 2 #This is a comma separated format for spread sheets SCHEMA:2
ACTION 1 "" "" "" 0
BATCH 0 "TEST","INDEX","STATUS","VALUE","NOMINAL","LOW_LIMIT","HIGH_LIMIT"\n

"" "" -1 35
BLOCK 1 "" "" "" 0
BOARD 1 "" "" "" 0
DIGITAL 1 "" "" "" 0
LIMIT 1 "" "" "" 0
MEASUREMENT 1 "" \n , 7 9 49 51 55 34 31 25
NODELIST 1 "" "" "" 0
OPEN 1 "" "" "" 0
PHANTOM 1 "" "" "" 0
REPAIR 1 "" "" "" 0
REPORT 1 "" \n "" 1 43
SHORTFROM 1 "" "" "" 0
SHORTS 1 "" "" "" 0
SHORTTO 1 "" "" "" 0

 The only change between this .ini file and the standard one shipped with
 TxSL is the 13th line starting with the word report. The original file
 has all null entries, similar to the lines 12 and 14.

==
Section 11. CHANGES FROM VERSION 2.0 TO 3.0
==

A. The pass/fail status of each element in a measurement array is
 now being reported and logged individually.

B. The action definition editor was modified to edit old C Style
 actions.

 NOTE: The new editor does not allow the user to create
 a new action definition with this older style.

C. Early releases of Agilent TestExec SL supported an internal symbol
 table named TestplanGlobals for which support was dropped at
 release 2.1. Because old testplans sometimes use this symbol

 table, whose scope is the entire testplan, support for it was
 reinstated to improve backward compatibility.

D. The OnIdlePoll callback was called only once while Agilent TestExec
 SL was idle. Now it is called continuously while Agilent TestExec
 SL is idle. This was a problem for implementing automation
 which requires polling of digital lines so the tester would
 know when the DUT was in place.

E. The SequenceLocals symbol table is now shared across testplan
 sequences by default.

 NOTE: This behavior was changed to maintain compatibility with
 some testplans created between the 2.0 & 2.1 releases
 that attempted to use the SequenceLocals symbol table to
 share symbols across testplan sequences. However, we
 STRONGLY recommend that you use TestPlanGlobals instead
 of SequenceLocals for sharing symbols across testplan
 sequences.

F. The System symbol table now contains two new symbols used to
 retain information about the most recent exception that
 occurred while running a testplan. The values of these symbols
 are valid only if the Exceptions check box is enabled on the
 Reporting tab in Agilent TestExec SL's Testplan Options box
 (Options | Testplan Options | Reporting).

 The new symbols are:

 UnhandledError - A string array that contains the contents
 of the exception stack when an exception was
 detected while running a testplan. The array's
 contents are the exception strings that appear
 in Agilent TestExec SL's Report window.

 UnhandledErrorSource - A string that contains the name of the
 test that was executing when the exception was
 detected. If no test was executing, this field
 is blank

G. The skip flags may now be set and saved with a testplan for all
 statement types - not just for tests.

H. The default behavior for all new testplans is halt after 1 test
 failure, previously the default behavior was to ignore all
 failures.

I. The DUT is now failed if one test fails within the testplan. The
 'Halt on failures' feature no longer has any influence on the
 pass/fail value of a DUT. This feature only regulates the number
 of tests that may fail before sequencing of a testplan will halt.
 In previous releases the 'Halt on failures' feature would also
 be used in determining a DUT's pass/fail status -i.e. if this value
 was three and the number of failing tests was less than or equal
 to three then the DUT was considered to have passed. This is no
 longer true, if this value is set to three then the sequencer will
 stop running tests if there are more then three failures - however
 the DUT will be marked as passed ONLY if there are NO failed tests

 within the testplan.

J. The report output now contains the testplan sequence exit status.

K. The sequencer has an exit code of SEQ_EXCEPTION_HALT even when
 the exception sequence is populated with tests, previously this
 exit code was returned only if the exception sequence was not
 populated with tests.

L. It is now possible to open a TxSL file (.tpa, .ust, .umd &
 .sym files) from Windows Explorer by simply double clicking
 the file.

Note: Since the .sym extension is fairly popular the install will
 look to see if it is already being used by another
 application if it is then we don't change the file type
 association.

You may also specify the ini file that you would like to use
as a command line argument to TxSL. For example, running
TxSL with the following command:
tstexcsl yourfile.ini
will start TxSL using the settings specified in yourfile.ini.

M. TxSL was not flushing the datalogging buffer when the sequence was
 halted from a paused state. Now the datalog buffer is always
 flushed when the sequence is halted.

N. TxSL now initializes the operator field of the system symbol table
 to "No Operator".

By internet, phone, or fax, get assistance
with all your test & measurement needs

Online assistance:
www.agilent.com/find/assist

Phone or Fax
United States:
(tel) 800 452 4844

Canada:
(tel) 877 894 4414
(fax) 905 282 6495

China:
(tel) 800 810 0189
(fax) 0800 650 0121

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) 305 269 7500
(fax) 305 269 7599

Taiwan:
(tel) 080 004 7866
(fax) (886 2) 2545 6723

Other Asia Pacific Countries:
(tel) (65) 375 8100
(fax) (65) 836 0252
Email: tm_asia@agilent.com

Product specifications and descriptions in this
document subject to change without notice.
© Agilent Technologies, Inc. 2004
Printed in the USA February 17, 2004

Agilent Technologies’ Test and Measurement
Support, Services, and Assistance
Agilent Technologies aims to maximize the
value you receive, while minimizing your risk
and problems. We strive to ensure that you
get the test and measurement capabilities you
paid for and obtain the support you need. Our
extensive support resources and services can
help you choose the right Agilent products for
your applications and apply them successfully.
Every instrument and system we sell has a
global warranty. Support is available for at
least five years beyond the production life of
the product. Two concepts underlie Agilent’s
overall support policy: “Our Promise” and
“Your Advantage.”

Our Promise
Our Promise means your Agilent test and
measurement equipment will meet its
advertised performance and functionality.
When you are choosing new equipment,
we will help you with product information,
including realistic performance specifications
and practical recommendations from
experienced test engineers. When you use
Agilent equipment, we can verify that it works
properly, help with product operation, and
provide basic measurement assistance for
the use of specified capabilities, while your
instrument is under warranty or technical
support contract. Many self-help tools
are available on Agilent’s web site.

Your Advantage
Your Advantage means that Agilent offers
a wide range of additional expert test and
measurement services, which you can
purchase according to your unique technical
and business needs. Solve problems efficiently
and gain a competitive edge by contracting
with us for calibration, extra-cost upgrades,
out-of-warranty repairs, and on-site education
and training, as well as design, system
integration, project management, and other
professional engineering services. Experienced
Agilent engineers and technicians worldwide
can help you maximize your productivity,
optimize the return on investment of your
Agilent instruments and systems, and obtain
dependable measurement accuracy for the
life of those products.

Agilent T&M Software and Connectivity
Agilent’s Test and Measurement software
and connectivity products, solutions and
developer network allows you to take time
out of connecting your instruments to your
computer with tools based on PC standards,
so you can focus on your tasks, not on your
connections. Visit www.agilent.com/find/
connectivity for more information.

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products
and applications you select.

Agilent Technologies

